Published on Web 02/18/2009

Anthryl-Substituted TrialkyIdisilene Showing Distinct Intramolecular Charge-Transfer Transition

Takeaki Iwamoto, ${ }^{*, \dagger}$ Maiko Kobayashi, ${ }^{\ddagger}$ Kei Uchiyama, ${ }^{\ddagger}$ Shin Sasaki, ${ }^{\ddagger}$ Selvarajan Nagendran, ${ }^{\ddagger}$ Hiroyuki Isobe, ${ }^{\ddagger}$ and Mitsuo Kira ${ }^{*, \ddagger}$
Research and Analytical Center for Giant Molecules and Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

Received November 29, 2008; E-mail: iwamoto@mail.tains.tohoku.ac.jp; mkira@mail.tains.tohoku.ac.jp

Although many stable disilenes hitherto reported ${ }^{1}$ have organic π-electron systems as bulky sterically protecting substituents, very few studies have been directed toward understanding the characteristics of the electronic communication including conjugation and intramolecular charge transfer (ICT) interaction between a $\mathrm{Si}=\mathrm{Si}$ double bond $(\pi \mathrm{Si})$ and a carbon π-electron system $(\pi \mathrm{C}) .^{2}$ All known disilenes bound to $\pi \mathrm{C}$ systems have multiple $\pi \mathrm{Si}-\pi \mathrm{C}$ interactions and, hence, are not suitable for defining the nature of a single $\pi \mathrm{Si}-\pi \mathrm{C}$ interaction. ${ }^{2}$ We would like to report the synthesis and properties of a series of trialkyldisilenes with single polycyclic aromatic substituents $\mathbf{1}-\mathbf{3}$. ${ }^{3}$ These disilenes allowed elucidation of the unprecedented ICT interaction between $\pi \mathrm{Si}$ and $\pi \mathrm{C}$ systems, while no appreciable $\pi \mathrm{Si}-\pi \mathrm{C}$ conjugation is expected because of their mutually perpendicular arrangement. Anthryl-substituted disilene $\mathbf{3}$ having a low-lying π^{*} (aryl) LUMO showed a distinct ICT absorption band due to the charge transfer from a $\pi \mathrm{Si}$ donor to a $\pi \mathrm{C}$ acceptor.

To synthesize disilenes $\mathbf{1}-\mathbf{3}$, new disilenide $\mathbf{4}$ was prepared by reduction of trichlorodisilane $\mathbf{6}$, which was obtained from isolable dialkylsilylene 5^{4} and t - $\mathrm{BuSiCl}_{3},{ }^{5}$ with excess KC_{8} in THF (Scheme 1). ${ }^{6,7}$ While stable disilenides have been extensively investigated by Scheschkewitz ${ }^{8}$ and Sekiguchi et al., ${ }^{9} \mathbf{4}$ is unique in that it is a trialkyldisilenide without any π substituents.

Scheme 1

Disilenes $\mathbf{1 - 3}$ were synthesized by reactions of $\mathbf{4}$ with the corresponding aryl bromides. ${ }^{6}$ Recrystallization from diethyl ether at $-30^{\circ} \mathrm{C}$ gave air-sensitive colored crystals of disilenes: 1-naphthyldisilene $\mathbf{1}(10 \%$, yellow), 9 -phenanthryldisilene $2(20 \%$, yellow), and 9 -anthryldisilene 3 (41%, blue-purple). ${ }^{10}$

Molecular structures of disilenes $\mathbf{1 - 3}$ determined by X-ray analysis are shown in Figure 1. ${ }^{6}$ All disilenes have a trans-bent geometry around the $\mathrm{Si}=\mathrm{Si}$ double bond with bent angles ${ }^{11}$ of 23.8° and $12.2^{\circ}, 26.7^{\circ}$ and 12.9°, and 11.4° and 6.9° around Si 1 and Si 2 atoms of $\mathbf{1}, \mathbf{2}$, and $\mathbf{3}$, respectively. The $\mathrm{Si}=\mathrm{Si}$ bond lengths

[^0][2.1943(14), 2.209(2), and 2.1754(12) \AA for $1-3$] are in the region of those for typical acyclic disilenes. ${ }^{1}$ It should be noted that disilene $\pi(\pi \mathrm{Si})$ and aromatic $\pi(\pi \mathrm{C})$ systems are almost perpendicular to each other with a dihedral angle δ^{11} of $83^{\circ}, 80^{\circ}$, and 88° for $\mathbf{1 , 2}$, and 3.

Figure 1. Molecular structures of $\mathbf{1}$ (left), $\mathbf{2}$ (middle), and $\mathbf{3}$ (right). Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Disilenes $\mathbf{1}$ and 2 in 3-methylpentane show similar three absorption bands (bands I-III) in the UV-vis region as typically shown for $\mathbf{1}$ in Figure 2a. ${ }^{12}$ Band I having fine structures is observed at 287 and 304 nm for $\mathbf{1}$ and 2, respectively, and assignable to the ${ }^{1} L_{\mathrm{a}}$ band of the corresponding $\pi \mathrm{C}$ systems because the reported ${ }^{1} L_{\mathrm{a}}$ band maxima of 1-(pentamethyldisilanyl)naphthalene and 9 -(pentamethyldisilanyl)phenanthrene are 287 and $302 \mathrm{~nm} .{ }^{13}$ The other two major bands of $\mathbf{1}$ and $\mathbf{2}$ (bands II and III) are very similar to each other, and hence, these bands are assigned to the transition originating from the common disilene moiety; $\lambda_{\max } / \mathrm{nm} 342$ and 376 for $\mathbf{1}$ and 343 and 378 for $\mathbf{2} .^{14}$ An apparent spectral feature of anthryldisilene $\mathbf{3}$ is very different from those of $\mathbf{1}$ and $\mathbf{2}$ as shown in Figure 2b, but the intense structured band between 320 and 450 nm with an ε of 19.7×10^{3} is regarded as band I overlapped with bands II and III, because the ${ }^{1} L_{\mathrm{a}}$ band of 9 -(pentamethyldisilany1)anthracene appears at 373 nm with an ε of $8.42 \times 10^{3} .{ }^{13}$ All these spectral features are in good accord with the picture that the $\pi \mathrm{Si}$ and $\pi \mathrm{C}$ systems are independent of each other and there is no significant conjugation between the two π systems, as expected by the mutually perpendicular arrangement of the two π systems.

A noticeable spectral feature of $\mathbf{3}$ is the presence of a weak but distinct absorption band at $525 \mathrm{~nm}(\varepsilon 420)$ in 3-methylpentane (band IV), which red-shifts to $535 \mathrm{~nm}(\varepsilon 480)$ in more polar 1,2dichlorobenzene, ${ }^{15}$ suggesting the ICT nature of this band.

To elucidate the nature of the absorption bands of $\mathbf{1 - 3}$, DFT calculations at the B3LYP/6-311G(d) level ${ }^{16}$ are carried out for model compounds $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$, where SiMe_{3} groups in $\mathbf{1 - 3}$ are replaced by SiH_{3} groups. The molecular structures of disilenes $\mathbf{1 - 3}$
determined by X-ray crystallography are reproduced well in optimized structures of $\mathbf{1}^{\prime} \mathbf{- \mathbf { 3 } ^ { \prime }}$. The almost perpendicular geometry between the $\mathrm{Si}=\mathrm{Si}$ bond and aromatic π plane in $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}\left(\delta 82^{\circ}\right.$, 81°, and 83° for $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$, and $\mathbf{3}^{\prime}$) supports compounds $\mathbf{1}-\mathbf{3}$ having similar perpendicular geometry even in solution. Frontier Kohn-Sham orbitals of $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ are almost pure π and π^{*} orbitals of disilene and aryl moieties, and their energy levels are almost the same as those of the component $\pi \mathrm{Si}$ and $\pi \mathrm{C}$ systems, ${ }^{16}$ indicating no significant conjugative interaction between the two π systems (Figure 3). The calculated absorption maxima and oscillator strengths of $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ using the TD-DFT method show good qualitative agreement with those of $\mathbf{1 - 3}$: the band positions and relative intensities for $\mathbf{1}^{\prime}$ and $\mathbf{3}^{\prime}$ are shown using vertical bars in Figure 2.

Figure 2. UV-vis spectra of (a) $\mathbf{1}$ and (b) $\mathbf{3}$ in 3-methylpentane at 298 K superimposed by the calculated band positions of $\mathbf{1}^{\prime}$ and $\mathbf{3}^{\prime}$. Selected theoretical transitions: a: $\pi($ aryl $) \rightarrow \pi^{*}($ aryl $), \mathrm{b}: \pi(\mathrm{Si}=\mathrm{Si}) \rightarrow \sigma^{*}($ ring $\mathrm{Si}-\mathrm{C})$, $\mathrm{c}: \pi(\mathrm{Si}=\mathrm{Si}) \rightarrow \pi^{*}(\mathrm{Si}=\mathrm{Si}), \mathrm{d}: \pi(\mathrm{Si}=\mathrm{Si}) \rightarrow \pi^{*}($ aryl $)$.

Figure 3. Orbital energy diagram of aryldisilenes $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-311G(d) level.

Judging from the comparison between experimental and theoretical UV-vis spectra, bands I, II, and III of disilenes $\mathbf{1 - 3}$ are assignable to transitions a $\left[\pi(\operatorname{aryl}) \rightarrow \pi^{*}(\right.$ ary $\left.)\right], \mathrm{b}\left[\pi(\mathrm{Si}=\mathrm{Si}) \rightarrow \sigma^{*}(\right.$ ring $\mathrm{Si}-\mathrm{C})]$, and c $\left[\pi(\mathrm{Si}=\mathrm{Si}) \rightarrow \pi^{*}(\mathrm{Si}=\mathrm{Si})\right]$. Theoretical calculations confirm that the broad $320-450 \mathrm{~nm}$ band of $\mathbf{3}$ is due to the overlap of bands a, b, and c. The weak absorption at 525 nm of $\mathbf{3}$ (band IV) is assigned as an ICT transition from $\pi(\mathrm{Si}=\mathrm{Si})$ to π^{*} (aryl) orbitals (transition d). Because similar $\pi \mathrm{Si} \rightarrow \pi^{*} \mathrm{C}$ ICT transition bands are predicted at 444 and 444 nm for $\mathbf{1}^{\prime}$ and $\mathbf{2}^{\prime}$, the broad tails of band III of $\mathbf{1}$ and $\mathbf{2}$ may be assigned to the ICT absorption bands. The absorption spectra of $\mathbf{1 - 3}$ suggests that a $\pi \mathrm{C}$ system having a lower-lying π^{*} LUMO such as anthracene and longer acenes is indispensable for a distinct longer-wavelength ICT band. ${ }^{17}$

The present study offers a guideline to designing unique materials showing effective ICT interaction between a $\pi \mathrm{Si}$ donor and a $\pi \mathrm{C}$ acceptor. ${ }^{18}$

Acknowledgment. This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Specially Promoted Research (No. 17002005, M.K. and T.I.) and Young Scientists (A) (No. 20685004, T.I.)).

Supporting Information Available: Experimental details for 1-4, details for the calculations of $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ and related compounds, and X-ray crystallographic data of $\mathbf{1 - 4}$ in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) For recent comprehensive reviews of disilenes, see: (a) Okazaki, R.; West, R. Adv. Organomet. Chem. 1996, 39, 231. (b) Weidenbruch, M. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley \& Sons: Chichester, U.K., 2001; Vol. 3, p 391. (c) West, R. Polyhedron 2002, 21, 467. (d) Kira, M.; Iwamoto, T. Adv. Organomet. Chem. 2006, 54, 73.
(2) For recent studies directed toward the application of the possible conjugation between disilenes and aromatic π systems, see: (a) Bejan, I.; Scheschkewitz, D. Angew. Chem., Int. Ed. 2007, 46, 5783. (b) Fukazawa, A.; Li, Y.; Yamaguchi, S.; Tsuji, H.; Tamao, K. J. Am. Chem. Soc. 2007, 129, 14164. (c) Kinjo, R.; Ichinohe, M.; Sekiguchi, A.; Takagi, N.; Sumimoto, M.; Nagase, S. J. Am. Chem. Soc. 2007, 129, 7766. (d) Sasamori, T.; Yuasa, A.; Hosoi, Y.; Furukawa, Y.; Tokitoh, N. Organometallics 2008, 27, 3325 .
(3) For our recent studies on the unsaturated silicon compounds with alkylsubstituents, see: (a) Ishida, S.; Iwamoto, T.; Kabuto, C.; Kira, M. Nature 2003, 421, 725. (b) Iwamoto, T.; Abe, T.; Kabuto, C.; Kira, M. Chem. Commun. 2005, 5190. (c) Iwamoto, T.; Sato, K.; Ishida, S.; Kabuto, C.; Kira, M. J. Am. Chem. Soc. 2006, 128, 16914. (d) Uchiyama, K.; Nagendran, S.; Ishida, S.; Iwamoto, T.; Kira, M. J. Am. Chem. Soc. 2007, 129, 10638.
(4) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 1999, 121, 9722. For a recent review of the chemistry of silylene $\mathbf{5}$, see: Kira, M.; Iwamoto, T.; Ishida, S. Bull. Chem. Soc. Jpn. 2007, 80, 258.
(5) Ishida, S.; Iwamoto, T.; Kabuto, C.; Kira, M. Silicon Chem. 2003, 2, 137.
(6) For details of synthesis and X-ray analysis of $\mathbf{1 - 4}$, see Supporting Information.
(7) In the solid state, disilenide 4 adopts a dimeric structure with a fourmembered ring made of $\mathrm{Si}\left(\mathrm{sp}^{2}\right)-\mathrm{K}-\mathrm{Si}\left(\mathrm{sp}^{2}\right)-\mathrm{K}$ atoms, while disilenides reported by Scheschkewitz ${ }^{8}$ and Sekiguchi et al. ${ }^{9}$ are monomeric.
(8) Scheschkewitz, D. Angew. Chem., Int. Ed. 2004, 43, 2965.
(9) (a) Ichinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Organometallics 2004, 23, 3088. (b) Inoue, S.; Ichinohe, M.; Sekiguchi, A. Chem. Lett. 2005, 34, 1564. (c) Ichinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Silicon Chem. 2005, 3, 111.
(10) The reaction of $\mathbf{4}$ with bromobenzene gave a complex mixture.
(11) Bent angle is defined as the angle between the axis through the $\mathrm{Si}=\mathrm{Si}$ bond and $\mathrm{R}-\mathrm{Si}\left(\mathrm{sp}^{2}\right)-\mathrm{R}$ plane, and dihedral angle δ is defined as the angle between the two axes that bisect $\mathrm{Si}\left(\mathrm{sp}^{2}\right)-\mathrm{Si}\left(\mathrm{sp}^{2}\right)-\mathrm{C}(t-\mathrm{Bu})$ and $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}(\mathrm{ipso})-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ angles as viewed along the $\mathrm{Si}\left(\mathrm{sp}^{2}\right)-\mathrm{C}($ aryl $)$ bond axis.
(12) See Supporting Information for details of UV—vis spectrum of 2.
(13) The $\lambda_{\max }(\varepsilon)$ of the ${ }^{1} L_{\mathrm{a}}$ of 1-naphthyl-, 9-phenanthryl-, and 9-anthrylsubstituted pentamethyldisilanes are reported to be $287 \mathrm{~nm}\left(9.94 \times 10^{3}\right)$, $302 \mathrm{~nm}\left(1.62 \times 10^{4}\right)$, and $373 \mathrm{~nm}\left(8.42 \times 10^{3}\right)$, respectively. Shizuka, H.; Sato, Y.; Ueki, Y.; Ishikawa, M.; Kumada, M. J. Chem. Soc., Faraday Trans. 1 1984, 80, 341.
(14) Tetraalkyldisilene $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{Si}=\mathrm{Si}\left[\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ shows two absorption bands: $\lambda_{\max }(\varepsilon), 357 \mathrm{~nm}\left(8.6 \times 10^{3}\right), 390 \mathrm{~nm}\left(12.6 \times 10^{3}\right)$. Masamune, S .; Eriyama, Y.; Kawase, T. Angew. Chem., Int. Ed. Engl. 1987, 26, 584.
(15) Dielectric constants are 1.84 for 3-methylpentane and 9.93 for 1,2dichlorobenzene. Christian, R. In Solvent and Solvent Effects in Organic Chemistry; Wiley-VCH, New York, 2004; p 472. Disilene 3 decomposed in $\mathrm{CH}_{3} \mathrm{CN}$.
(16) See Supporting Information for details of calculations for $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ and related compounds.
(17) Dabestani, R.; Ivanov, I. N. Photochem. Photobiol. 1999, 70, 10.
(18) Preliminarily, when band I of $\mathbf{3}$ was excited in hexane, emission from anthryl $\pi \pi^{*}$ state was observed at 415 nm with a lower quantum yield (0.14) than that for 9-anthrylpentamethyldisilane (0.73). ${ }^{13}$ Excitation of the ICT band showed no emission.

JA8093313

[^0]: ${ }^{\dagger}$ Research and Analytical Center for Giant Molecules.

 * Department of Chemistry.

